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Figure 1: Misaligned images are aligned with our graph-based alignment method so that they can be used in various applica-
tions such as photometric stereo. Left to right: images before and after alignment, and normal maps calculated from misaligned
and aligned images.

Abstract
Image alignment is one of the first steps for most computer vision and image processing algorithms. Image fusion,
image mosaicing, creation of panoramas, object recognition/detection, photometric stereo and enhanced render-
ing are some of the examples in which image alignment is a crucial step. In this work, we focus on alignment
of high-resolution images taken with a fixed camera under different light directions. Although the camera posi-
tion is largely fixed, there might be some misalignment due to perturbations to the camera or to the object, or
the effect of optical image stabilization, especially in long photo shoots. Based on our experiments, we observe
that feature-based techniques outperform pixel-based ones for this application. We found that SIFT [Low04] and
SURF [BTVG06] provided very reliable features for most cases. For feature-based approaches, one of the main
problems is the elimination of outliers, and we solve this problem using the RANSAC framework. Furthermore, we
propose a method to automatically detect the transformation model between images. The datasets that we focus
on have around 10-100 images, of the same scene, and in order to take advantage of having many images, we
explore a graph-based approach to find the strongest connectivities between images. Finally, we demonstrate that
our alignment algorithm improves the results of photometric stereo by showing normal maps before and after
alignment.

1. Introduction

Image alignment is the process of overlaying images of the
same scene under different conditions, such as from differ-
ent viewpoints, with different illumination, using different
sensors, or at different times. In this work, we focus on the
alignment of multiple images of the same scene under vary-
ing illumination.

In the literature, there are many works on image align-
ment, and most of them aim to solve a specific problem. For
example, algorithms for medical image alignment mostly
use intensity values of the image, while object recognition
algorithms usually try to find some descriptive salient fea-
tures. In short, the structure of the algorithm is shaped by
the specifications of the problem itself.
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Figure 2: Effect of image stabilization (IS). a) A sample im-
age from the textile dataset. b), c), and d) Closeup images
showing the image stabilization effect, red lines are placed
on the same locations to show the misalignment between
frames because of IS.

In this work, we focus on aligning images of the same ob-
ject under different light directions, keeping other conditions
almost the same. Our main contribution is four-fold:

• Evaluation of which approaches to image alignment are
most stable under different illumination,

• Progressively solving for more and more complex image
transformations, to use the least general (and hence most
robust) model necessary for good alignment,

• Simultaneous alignment of multiple images using span-
ning trees of graphs,

• Demonstration of the effect of the image alignment on
photometric stereo.

The image datasets that we focus on are usually used
as inputs to other applications, such as polynomial tex-
ture mapping (PTM) [MGW01], shape and detail enhance-
ment [FAR07], photometric stereo and enhanced rendering
[MWGA06] etc. For example, PTM takes several images
taken from the same view point but under different light
directions, and constructs the coefficients of a bi-quadratic
polynomial per texel. These coefficients are used later to re-
construct the surface color under varying light directions.
Although the camera and the object in the capture setup
should be kept still, sometimes there might be some mis-
alignment between images because of perturbations to the
camera/object in the scene or the effect of optical image sta-
bilization. For example, Figure 2 shows some misalignments
caused by image stabilization. Therefore, image registration
is necessary to make sure that input images are well aligned.

However, many techniques in the literature are either only
partially invariant to illumination change or not invariant

(a) (b)

(c) (d)

Figure 3: Closeup images from the panel dataset (top row)
and the skull dataset (bottom row). Different light directions
might cause different cast shadows (a, b, and c), moving
specular highlights (a, and d), and different visible edges
with different sharpness (all).

at all [Zit03]. For images taken under different light di-
rections, the main problem is the non-linear illumination
change, which is not trivial to deal with because different
light directions may lead to cast shadows, moving specular
highlights, local changes in brightness on the image, or even
the loss of some information (e.g, if the light direction is
perpendicular to a geometric edge on the object, it might not
be recognizable on the image; or a texture edge might not be
visible if it is in shadow), Figure 3 illustrates these problems.
In early experiments, we observed that pixel-based methods
such as normalized cross correlation, L2 difference of inten-
sity values, pixel dot product etc. fail to find correct align-
ments for our datasets most of the time. It is because pixel-
based methods rely on intensity values only, and these are
very unreliable under non-linear illumination changes. That
is why, in this work, we focus on feature-based methods.

In this paper, we first summarize some image registration
algorithms in the literature. Then we explain our approach to
solve the matching problem for images taken under different
illumination. Finally, we show the results.

1.1. Related Work

Image registration (alignment) is transforming a source im-
age to the coordinate system of the reference image. Im-
ages may be taken either at different times, from different
views, under different lighting, or with different sensors.
Researchers have been working on the image registration
problem for decades to solve alignment problems in vari-
ous fields such as medical imaging, remote sensing, image
fusion, panorama, change detection, recognition etc.

Brown [Bro92] published a very broad survey on image
registration techniques in 1992. More recently, Zitova et al.
published another survey paper in 2003 including more re-
cent works on image alignment [Zit03]. In 2006, a tutorial
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for image alignment and stitching was published by Szeliski
[Sze06].

The many algorithms for image alignment can be broadly
categorized as pixel-based or feature-based. Pixel-based
methods use intensity values directly: for example they may
rely on normalized-cross-correlation and its variants, sim-
ilarity measures using pixel dot products or L2 distance.
Matching, fitting and validation steps are calculated simul-
taneously for a preselected transformation model [Zit03].

For template matching, Kaneko et al. proposed the selec-
tive correlation coefficient, which is very similar to cross-
correlation (CC), but it extracts a correlation mask-image
differently than CC. They used increment sign correlation
to extract the mask, and the mask is enhanced with four-
pixel majority rule [KMI02], [KSI03]. Silveira et al. pro-
posed a method for real-time visual tracking. They mod-
eled the illumination change and image motion by solving
a second-order optimization problem minimizing the inten-
sity difference based on illumination and image motion mod-
els [SM07]. By using only the strongest image gradients
with a pyramidal refinement strategy, Eisemann and Durand
align flash and no flash images [ED04].

One of the well known pixel-based algorithms in com-
puter vision and graphics is optical flow, proposed by Lu-
cas and Kanade [LK81]. It assumes constant flow in a lo-
cal neighborhood and solves optical flow equations by least
squares. Optical flow and its variants have been used to solve
image alignment problems in various works [KUWS03],
[KMK05], [Bar06], [BAHH92]. To find only translational
misalignment, Ward proposed median threshold bitmaps in
image pyramids for hand-held photographs with varying ex-
posures [War03].

Feature-based algorithms consist of three main blocks:
salient feature extraction, feature matching, and estimation
of the transformation. Various types of feature detection al-
gorithms have been proposed throughout the years such as
line, contour, and region detectors. However, salient feature
points are easier to deal with than lines, contours or sur-
faces. The Harris corner detector [HS88] has been used for
many years to detect corner-like points. Recently, feature de-
scriptors became more popular because of their distinctive
and invariant natures. The Scale-Invariant Feature Transform
(SIFT) was proposed by Lowe in 2004; since then, it has
been used widely because of its shift and scale-invariance
and its distinctive descriptors [Low04]. Furthermore, Lowe
showed that SIFT shows high performance on object recog-
nition. Later on, Brown and Lowe used SIFT on unordered
panorama images for stitching, together with the RANSAC
framework for outlier elimination and a probabilistic model
for verification [BL07]. Tang et al. similarly used a variant of
SIFT with RANSAC to align medical microscopic sequence
images [TDS08]. It is shown in [WWX∗10] that the same
approach (SIFT and RANSAC) works well for multi-modal
image registration-aligning infrared to visible images. Bay

et al. proposed a similar but faster approach to SIFT called
Speeded Up Robust Features (SURF) [BTVG06]. Winder et
al. introduced another configuration to compute salient fea-
ture descriptors and presented comparisons to SIFT [WB07],
[WHB09].

For feature matching, the least efficient method is brute
force comparison of L2 distance between feature descrip-
tors. If the number of features is large, such as for object
recognition, k-d trees or similar data structures can be used
to speed up the search [BL07]. Even if a highly distinctive
descriptor is used, there might be some false matches called
outliers, and a randomized framework to eliminate outliers
called RANSAC is often preferred because it works with up
to fifty percent outliers [Fis81]. Mikolajczyk et al. published
comparisons of steerable filters, PCA-SIFT, differential in-
variants, spin images, SIFT, complex filters, moment invari-
ants, and cross-correlation for different types of interest re-
gions [MS05]. Also an intensive survey on local invariant
feature descriptors can be found in [TM08].

As a hybrid of feature- and pixel-based methods, normal-
ized cross-correlation is used with a Harris-Laplacian detec-
tor in [ZHG06] to make NCC rotation and scale invariant.

1.2. Overview

The outline of the rest of paper is as follows:

• Single-target alignment: Our core algorithm uses
salient features and the RANSAC framework to eliminate
outliers.

– Feature detection: We propose a normalized Har-
ris corner detector to extract features. Also, we ex-
perimented on SIFT [Low04] and SURF [BTVG06]
salient features and show that they outperform the
Harris detector.

– Feature matching: We use the Euclidean distance be-
tween feature locations for normalized Harris corners,
Euclidean distance between feature descriptors for
SIFT and SURF for feature matching. Wrong matches
because of impreciseness in feature detectors are elim-
inated with RANSAC [Fis81].

– Progressive Transformation: We propose an algo-
rithm which automatically detects the best transfor-
mation type between two images instead of assuming
one transformation type such as affine or projective.

• Graph-based alignment: Instead of aligning each image
in the dataset to one target image independently, we show
that alignment can be improved by constructing a span-
ning tree based on image similarities and aligning each
image to its neighbor towards the root.

• Results: We showed the results of our alignment algo-
rithm on several datasets, and demonstrate that the image
alignment improves the results of photometric stereo.



4 Sema Berkiten and Szymon Rusinkiewicz, Princeton University / Alignment of Images Captured Under Different Light Directions

2. Single-Target Image Alignment

Image alignment is a correspondence problem of mapping
one image to another. In this section, we explain the single-
target alignment algorithm in three sections: feature extrac-
tion, feature matching, and transformation models.

2.1. Feature Extraction

Although invariance to geometric deformation, and shift and
scale invariance to illumination are explored well in previ-
ous work, there is no feature extraction algorithm which is
invariant to non-linear illumination changes such as vary-
ing light direction. We therefore explore a number of feature
detection algorithms on our datasets, with the aim of discov-
ering which ones perform best in the presence of large-scale
lighting changes.

2.1.1. Normalized Harris Corner Detector

Intuitively, we expect that many corner-like features in an
object’s texture can be precisely localized regardless of illu-
mination. We therefore begin by exploring the performance
of the Harris corner detector. Unfortunately, while this de-
tector is invariant to shifts in brightness (since it is based
on the gradient), it is not invariant to multiplicative changes
in brightness. As a result, this detector is highly sensitive to
illumination, and extracts more corner points in bright re-
gions. We therefore explore a normalized Harris corner de-
tector, based on a structure tensor that is normalized by the
local image intensity:

C =

[
∑W g(i, j)Ix(w)2

∑W g(i, j)Ix(w)Iy(w)

∑W g(i, j)Ix(w)Iy(w) ∑W g(i, j)Iy(w)2

]
∑W g(i, j)I(w)2 (1)

where W is the interest window around each pixel, (i, j) are
pixel offsets within the window, g is a 2D Gaussian filter, w
is the global pixel location, and I(w) is the image intensity
at that pixel.

2.1.2. SIFT

The Scale-Invariant Feature Transform (SIFT) is a scale-
and rotation-invariant local feature detector proposed by
Lowe [Low04], and used for many computer vision prob-
lems since then. There are several works showing its robust-
ness in the literature [MS05], [Pav08], [KMW11]. SIFT
consists of four main steps: scale-space extrema detection,
accurate key-point localization, orientation assignment, and
calculation of a key point descriptor.

In the first step, candidate interest points are detected by
finding extrema over scale and image space. The second step
refines the interest points’ locations by fitting a 3D quadratic
function to the scale-space function, which is approximated
by the Taylor expansion. In the third step, each feature point
is assigned a dominant orientation, which is detected by find-
ing the maximum of the local orientation histogram around
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Figure 4: Top: Three images from the skull dataset. Bot-
tom: Repeatability ratios of different feature detectors on
this dataset. (First image is selected as the target image.)

the feature point. In the final step, a descriptor vector is cal-
culated for each feature point. This descriptor is built by con-
catenating local orientation histograms of 4x4 sub-windows
of a 16x16 window around the feature point. Further details
of SIFT can be found in [Low04].

2.1.3. SURF

The Speeded-up robust feature (SURF) detector proposed by
Bay et al. [BTVG06], is also a scale and rotation invariant
local feature detector which is partially inspired by SIFT. Its
main purposes are to be computationally less expensive and
to be as distinctive as SIFT. In order to speed-up the com-
putations, SURF uses integral images and box-filter approx-
imations to the second derivative of Gaussian.

2.1.4. Comparison of Feature Extraction Methods

In Figure 4, the repeatability of features on a typical dataset
is explored for the three different types of feature detectors
above. The repeatability ratio between the target (t) and the
source (s) images is formulated as follows:

R =
Number of f pi’s

Total number of features
(2)

where,
f pi = {feature pair i |

√
2≥‖ (xs(i),ys(i))− (xt(i),yt(i)) ‖}

It is obvious that, despite the improvements of normaliza-
tion, the Harris corner detector is outperformed by SIFT and
SURF on this dataset, and indeed we find that this behavior
generalizes across many different types of images. As a re-
sult, we use SIFT as the feature extractor throughout the rest
of the paper.
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Method selected by Ground-truth error for:
progressive algorithm Translation Tr+Rot Tr+Rot+Sc Affine Projective

Translation 0.13 0.25 0.33 0.38 15.7
Translation+Rotation 6.26 0.23 0.23 0.44 4.7

Translation+Rotation+Scale 17.7 2.64 0.43 0.56 4.7
Affine 14.5 2.94 1.13 0.47 2.1

Projective 18.4 2.5 1.01 0.55 0.23

Table 1: Average ground-truth alignment errors in pixels for image collections in Table 2. The progressive algorithm selects
the method shown at left in each row. As seen from the ground-truth errors (to which the progressive algorithm did not have
access), the progressive method generally picks the transformation type giving the lowest error.

2.2. Feature Matching

The naive way to match feature points is to calculate the
Euclidean distance between feature descriptors and com-
pare them. Another approach is to calculate the ratio of Eu-
clidean distance to the closest neighbor and to the second
closest neighbor and eliminate the ones which have high ra-
tio, because a low ratio implies that it is a correct correspon-
dence with high probability. For tasks which require search-
ing a large feature database, such as object recognition, spe-
cial data-structures such as k-d tree or search strategies are
used. For example, [Low04] uses the Best-Bin-First (BBF)
search algorithm, which returns the closest neighbor with
high probability. The BBF is a variant of k-d tree, using a
priority queue based on closeness, and it terminates after a
specific number of neighbors are explored.

In this work, we use the naive method (exhaustive search
on Euclidean distances), but we apply a constraint on the
distance between the locations of feature points on the image
plane, because we have assumed the deformation between
images will be small which is the property of our specific
problem, so corresponding points cannot be very far away
from each other. In particular, we eliminate all matches if
the feature points are more than 128 pixels apart.

2.3. Transformation Models

To calculate a transformation matrix for given feature map-
pings between two images, the transformation type has to
be selected first. We consider several classes of transforma-
tions, of increasing numbers of degrees of freedom (DOF):
translation only (2 DOF), translation and rotation (3 DOF),
similarity (4 DOF), affine (6 DOF), and projective or ho-
mography (8 DOF).

The projective transformation model is the most generic
among all, which is why it is commonly used, especially if
the type of deformation is not given a priori. However, this
generality comes at a price, since incorrect correspondences
and even small errors in feature point localization can result
in significant errors in the transformation.

2.3.1. Progressive Transformation Model

Selection of the transformation model determines the num-
ber of degrees of freedom, and thereby the constraints on
the transformation matrix. When the deformation type on in-
put images is not known in advance, the projective transfor-
mation model is commonly chosen. However, when there is
only a translational difference between two images, for ex-
ample, the estimated transformation will be more erroneous
than it would be if a translational model were selected, be-
cause of localization error on the feature extraction step.

In order to obtain maximally accurate and robust esti-
mates of the transformation, we propose a progressive model
to select a deformation type automatically, similar to the
model selection algorithm proposed by [Tor98]. In partic-
ular, we use the following algorithm inspired by RANSAC:

Algorithm for progressive transformation

repeat

• For each transformation model, from translational to
projective:

– Estimate the transformation matrix by fitting the
least squares on feature matches in a RANSAC
framework, store the number of correspondences
which agree with the estimated matrix (inlier).

until the maximum number of inlier matches is smaller
than the predefined threshold, τ:
Select the final transformation: the one with the maxi-
mum number of inlier correspondences.

The reason why this approach works is the presence of lo-
calization error on the feature point locations. Otherwise, if
all feature points were localized perfectly, we would expect
to get the same results for different transformation models.
In Table 1, average single-target alignment errors for dif-
ferent types of transformation models are shown. We ob-
serve that, in a majority of cases, the progressive algorithm
picks the transformation model giving the lowest ground-
truth pixel error.
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(a) Image 1 (b) Image 11 (c) Image 12 (target)
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Figure 5: (a-c) Images 1, 11, and 12 in the dataset. (d) Per-
centage of correct feature matches, as well as image simi-
larities (inverse of normalized and scaled L2 differences of
low-resolution images) for the panel dataset. Image 12 is the
target image.

3. Graph-Based Image Alignment

So far we have explored single-target image alignment, but
aligning all images in the dataset to one target image does
not give good results for all cases. In particular, it is in-
evitable to get badly aligned results when images in the
dataset have a lot of geometrical variations and less texture,
such as images in the skull dataset, because different light
directions will result in different shadows, varying local gra-
dients, and thereby different local image features. For exam-
ple, Figure 5 shows the number of correct matches between
one fixed target image (Image 12) and the remaining images
in the dataset. We observe that the more similar the illumi-
nation condition, the higher the number of correct matches.

Based on experiments such as this, we conclude that it is
possible to leverage the availability of multiple images by
not attempting alignment to a single target. Instead, we for-
mulate multi-image alignment as finding a spanning tree in a
graph in which each vertex V represents an image and each
edge E represents similarity. For efficiency, it is desirable
to have the edge weights easily computable. Fortunately, as
shown in Figure 5, simple L2 image difference (on down-
sampled images) is highly correlated with the number of cor-
rect feature matches. We may therefore use low-resolution
L2 similarity as a proxy for feature similarity when con-
structing our graph. Also, we observed that this proxy gives
higher weights for image pairs with close light positions.

One way of visualizing the similarities between images
quantitatively is Laplacian Eigenmaps [BN01]. This is a
spectral clustering technique used to solve the dimension re-

MST edges
Root node of MST

Figure 6: Each dot represents an image and located based
on the second and third eigenvectors of the Laplacian Eigen-
maps for the skull dataset (36 images). MST-edges are shown
with black arrows, the first node is the root node of the MST.

duction problem. It takes an affinity matrix whose elements
are the Euclidean distance between corresponding images.
Its optimal solution is the eigenvector corresponding to the
second smallest eigenvalue. Figure 6 shows the eigenvectors
corresponding to the second and third smallest eigenvalues
for the skull dataset of 36 images.

3.1. Minimum Spanning Tree vs Shortest Path Tree

Once we have constructed an image similarity graph G, we
are left with the task of extracting a subset of edges on which
to perform full image alignment. (Of course, including more
than the minimum subset of edges and combining the results
with least squares could reduce error, but also increases sen-
sitivity to bad correspondences, and is not explored in this
paper.) We compare two algorithms for extracting a span-
ning tree:

• A minimum spanning tree (MST) is the one which has the
smallest total weight among all possible spanning trees of
G. We use Prim’s algorithm [Pri57] to construct the MST.

• A shortest path tree (SPT) with root vertex v is the span-
ning tree of G containing all shortest paths from v to other
vertices. Dijkstra’s algorithm [Dij59] can be used to con-
struct an SPT from a connected graph.

Figure 7 shows alignment errors (on a logarithmic scale)
for single-target alignment, SPT, and MST. We observe
that graph-based methods typically outperform single-target
alignment. Total alignment errors are indicated in the leg-
ends, and for the skull dataset we observe that the total
single-target alignment error (130 pixels, 3.7 pixels per im-
age) is far from acceptable. On the other hand, MST gives
roughly 0.5 pixel error per image for the same dataset. For
the panel dataset, alignment results for each approach are
very close to each other (about 0.3 pixel error per image)
because this dataset is feature-rich, texture-rich, and the ob-
ject has a flat surface. On the other hand, the skull dataset is
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Figure 7: Alignment errors in pixels (in log scale) for each
image. Single-target alignment, SPT, and MST for panel (a)
and skull (b) datasets. The sum of alignment errors are indi-
cated in the legend.

more challenging and MST outperforms both single-target
and SPT in this dataset. Although it is not very clear that
MST always performs better than SPT, we use MST for the
tests in the Results section, because MST outperforms both
single-target and SPT in the most challenging case that we
have (skull dataset).

4. Results

In Table 2, the test results on different datasets for three dif-
ferent algorithms (single-target alignment with homographic
transformation type, single-target alignment with progres-
sive transformation, graph-based alignment with progressive
transformation type) are demonstrated. Three test cases are
formed: i) datasets with ground truths: images on the original
datasets are perfectly aligned and images are manipulated
randomly (transformation types, from translation only to ho-
mographic, and manipulation amounts are set randomly);
ii) datasets with gold standard: the original datasets have
misalignments and they are aligned by manually selecting
correspondences to calculate the gold standard; iii) experi-
menting on the number of key-points on each image in the
dataset. In the table, the third column is the average number
of key-points on images in a dataset, the fourth column is the
pixel resolutions of images in the dataset, and the subsequent
columns show average and maximum alignment errors for
the three algorithms. Alignment error for a given estimated
matrix (E) and the ground truth matrix (G) is calculated as
follows:

e =
1
4 ∑

i=1,2,3,4
||G−1E pi− pi|| (3)

where the pi are the four corner points of the image. The rea-
son for calculating the alignment error on the corner points

is that the maximum error will appear on the corners for the
transformation types that we consider.

We observe that single-target alignment fails when the
projective transformation model is assumed for large collec-
tions. On the other hand, the progressive model mostly gives
successful results. The graph-based method using MST and
progressive transformation leads to the alignment error of
0.5-1.5 pixels on average, while the single-target alignment
algorithm results in alignment error of 0.5-7 pixels on aver-
age. And the graph-based algorithm works robustly on very
challenging datasets such as the first and second collections
in Table 2. While the maximum error is unacceptable on
most of the datasets when the single-target alignment is used,
the graph-based method gives acceptable results.

We also show the effect of the alignment on photomet-
ric stereo in Figure 3 by demonstrating the normal map be-
fore and after alignment. On the first three examples, it is
obvious that the details cannot be recovered with photomet-
ric stereo if they are not well-aligned. And in the last row,
we observed that misalignment causes embossing effect on
moderately flat surfaces. Also, mean-square errors (MSE)
between ground truth and each normal map are indicated un-
der each closeup image. We observed that image alignment
improves the MSE at least ten times.

5. Conclusion and Future Work

In this work, we proposed a feature-based framework to
align images of the same object exposed to light from dif-
ferent directions. We showed that total alignment error for
a dataset can be reduced by a graph-based approach rather
than single-target alignment. Also, we demonstrated the im-
portance of the image alignment by showing how much our
algorithm improves the results of photometric stereo.

The obvious limitation of this work is caused by feature
detectors because they are not invariant to non-linear illumi-
nation changes. Even though they can handle small illumi-
nation changes, there is no guarantee that feature locations
and descriptors will be consistent for large changes. In par-
ticular, lack of texture and geometry variations results in less
reliable salient features. In future work, in order to cope with
unreliable image features, surface geometry (normal-maps)
can be included to feature descriptors iteratively. For badly
warped images, we can allow the user to add some hard con-
straints, such as selecting a few control points on target and
source images.
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Alignment Errors (in pixels) Running-Time (in secs)

Projective Progressive MST-Progressive Key calc Single- Graph-

Dataset #Images #Points Resolution Avg. Max Avg. Max Avg. Max /image target based

Ground Truth: Perfectly aligned images are randomly manipulated (ranging from only translation to homographic manipulations) to create test sets.

36 430.7 1190x980 45.47 113 2.197 13.4 0.5957 1.87 1.7 3.9 2.2

19 1748 2184x1456 43.19 245.3 6.676 32.87 1.351 3.081 4.1 9.6 8.2

49 1073 1728x2592 71.04 284.4 0.5062 1.507 0.6031 1.571 1.8 7.4 10.0

64 572.6 2184x1456 27.73 186.4 0.5868 4.11 0.9675 2.304 1.4 8.3 8.1

36 1153 1312x864 29.25 88.99 0.6456 2.612 0.8497 2.281 1.8 9.5 7.1

42 488.4 1024x1024 29.66 102.5 2.309 15.47 1.655 6.451 5.6 6.2 5.2

34 986.7 2184x1456 47.74 286.5 3.46 38.84 1.698 3.732 14.1 19.0 14.7

Gold Standard: it is acquired by manually aligning images

47 873.3 1728x2592 105.6 406.4 0.8966 2.096 0.9756 1.73 1.6 7.5 7.9

4 1206 2592x1728 13.61 46.68 1.148 2.143 1.277 2.658 27.53 1.15975 1.10477

Experiment on the number of key-features

68 4569 2799x1868 87.63 499.3 0.5423 1.333 0.6249 1.56 3.2 51.6 66.0

68 489.3 2799x1868 104.6 484.3 1.052 5.943 0.9628 3.335 5.2 11.6 11.1

Table 2: Test results for different datasets.
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Sample Image Normal Map
for Ground Truth

Normal Maps for
Misaligned dataset

Normal Maps for
Ground Truth

Normal Maps
after Alignment

MSE: 0.004 MSE: 0.0003

MSE: 0.026 MSE: 0.01

MSE: 0.005 MSE: 0.0009

MSE: 0.001 MSE: 0.0002

Table 3: Effect of alignment on photometric stereo.The first column shows example images from each dataset, the normal
maps calculated on either ground truth or gold standard dataset are shown on the second column. The third, fourth and the
fifth columns demonstrate close-up images of the normal maps calculated on misaligned, ground truth and aligned datasets
respectively. The close-up regions are indicated with a red square on each normal map on the second column. Mean square
errors(MSE) between normal maps for aligned and ground truth datasets and between normal maps for misaligned and ground
truth datasets are indicated under the close-up images.
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