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Abstract— Diffusion Tensor Magnetic Resonance Imaging
(DTI) fiber tractography is a way to reconstruct fiber tracts
underlying data according to local anisotropic diffusion char-
acteristics. Reliability of fiber tracts as a result of tractography
decreases due to noise in the data, error accumulation dur-
ing integration and stochastic nature of the underlying data.
We proposed a new similarity measure based on point-wise
correspondence between tracts. Laplacian Eigenmaps are used
to embed the fiber tracts into <3 based on the new similarity
measure. We compared our method with a previously proposed
method, on real and phantom data, that uses a 9D feature space
to measure fiber similarity and showed that the new similarity
measure results in a low dimensional manifold representing the
fiber bundles. We presented preliminary results demonstrating
that the fibers that fall far from this manifold correspond to
outliers.

I. INTRODUCTION

The human brain mapping refers to understanding the
functional and the physiological structure of human brain.
Diffusion Tensor Magnetic Resonance Imaging (DTI) is
the unique technique for in-vivo visualization of the brain
mapping. The DTI data has diffusion information (with a
zero mean 3D Gaussian distribution) of a finite volume. DTI
tensor field, which are 3×3 symmetric, positive semi-definite
second-order tensors has direct relation with the covariance
matrix of this distribution. Diffusion has an anisotropic
nature and the principal eigenvectors of tensors are parallel
to the underlying fiber orientation [1], [2]. In the basis of
this knowledge, DTI tractography is done by integration
of principal eigenvectors starting from some specific seed
points [3]. Reliability of tractography decreases due to noise,
high curvatures, and kissing/crossing tracts which can lead
to misinterpreted fiber tracts [4]. In order to differentiate
erroneous/unreliable fiber tracts and to visualize underlying
anatomical meaning, several clustering techniques were pro-
posed. Clustering algorithms are composed of the main parts:
i) fiber tract similarity measure, ii) clustering the fiber tracts
according to that similarity measure.

As similarity measure, Brun et al. proposed to represent
the fibers in <9 with feature vectors composed of the first
and the second order moments of the x-, y-, z- coordinates
along a given fiber tract[6]. The fiber similarity is defined
as the closeness of Euclidean distance in <9. For another
work, they proposed a coarse method which is the Euclidean
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distance between two fibers’ endpoints in <3 [7]. Ding et
al. introduced the corresponding segment method based on
measuring point-wise corresponding portions of two fibers
[8]. A corresponding segment ratio is calculated as the
ratio of the length of the corresponding segment over the
total length of two fibers decreased by the length of the
corresponding segment. Two fibers are said to be similar if
their corresponding segment ratio is high and the mean point-
wise Euclidean distance between them small. O’Donnell et
al. proposed to use the average Hausdorff distance between
two fiber tracts as the similarity measure [10], [9] while
Zhang et al. proposed to use the average of distances above
a threshold between fiber points [12], [11].

For solution of clustering problem, there are two com-
monly used methods: hierarchical clustering and spectral
clustering. Brun et al. proposed the Normalized Cut (NCut)
algorithm [6], [13]. As in all spectral clustering methods, the
NCut algorithm depends on an N × N symmetric affinity
matrix, W, with wij being the similarity between ith and
jth fiber tracts. In terms of graph theory, W is the edge
weights of a graph with N vertices corresponding to N
fiber tracts. Cost minimization for graph-cut is solved with
the NCut algorithm as a generalized eigenvalue problem.
It divides whole data into two groups. Bi -partitioning is
applied by thresholding the entries of the N-D eigenvectors
starting from the optimal solution, and continues on entries of
disjoint parts. Brun et al. colored fiber tracts in a continuous
manner, soft-coloring, with using three optimal solutions
(forming <3 space which is used as RGB color space) instead
of performing an explicit clustering. Another spectral clus-
tering technique, Laplacian Eigenmaps (LE), was proposed
by Belkin et al. [5]. This method is based on the same
generalized eigenvalue problem in NCut algorithm. LE finds
the optimal solution to embed an input space (space of fiber
tracts) into <n, 1 ≤ n ≤ N . Each resulting eigenvector is a
mapping function from <N to <1. The optimal solution is
the eigenvector corresponding to second smallest eigenvalue
as in NCut algorithm. As commonly, the three most optimal
solution (n = 3) is used to map each fiber into <3 and
then each fiber is colored with three components as R-, G-
, B- values. Alternatively, Zhang et al. proposed to use an
agglomerative hierarchical clustering in which fiber tracts are
merged until a specified number of clusters are formed [12].
Moreover, K-most Similar algorithm is used by Ding et al.
as clustering method[8].

In this work, our contributions are in fiber tract similarity
measurement and detection of erroneous fiber tracts. We
proposed a new technique to calculate similarity between
fiber tracts which is based on point-wise correspondence.



Fig. 1. The Pivot Points (PP) for a fiber tract is defined to be the points
that are themselves closest to their nearest neighbours on the other tract.
The arrows in the figure mark the nearest neighbours. The white marked
points are the PPs where as the dark ones are normal data points. Note
how the PPs take care of the high frequency deviations along the course of
tracts, ie the short range deviation between the tracts decreased the number
of PPs in this example.

Then we map fiber tracts to <3 with using LE [5]. Outlier
tract detection is achieved by a simple algorithm based on
thresholding the neighbouring mean distance to k-nearest
fiber tracts in <3. Experiments are conducted on phantom
and real DTI data.

II. METHOD

A. Fiber Tract Similarity Based on Pivot-Point

Similarity measure based on Pivot-Point (PP) has been
inspired a method proposed by Ding et al. [8]. The basic idea
underlying similarity measure depends on the assumption of
similar fiber tracts following similar pathways throughout
their courses. So pivot points have one-to-one mapping be-
tween each other. Although corresponding segment method is
derived from similar idea to PP method, it does not take into
account short deviations (high frequency noise) along tracts.
First step in PP method is detection of them, of course. A PP
can be defined as a point on the shorter tract, whose closest
point on the longer tract is closest to itself along the shorter
tract. PP pairs are shown in Figure 1. For this example shorter
fiber is Fiber B, so the PPs are defined for Fiber B only. Each
PP on Fiber B has a pairing point on Fiber A. Let → denote
the closest point in terms of Euclidean distance in <3. Let A
and B denote the sets of equally spaced points along fibers
A and B respectively. Then,

p ∈ B is a PP ⇐⇒ (p→ r)∧(r → p) , p ∈ B, r ∈ A (1)

After the PPs are determined, the similarity between Fibers
A and B (wAB) is defined in terms of the Pivot Ratio
(PRAB) and the mean Euclidean distance between pivot
point pairs dAB defined as,

PRAB =
NPP

NA +NB −NPP
(2)

dAB = ‖rA − rB‖2 (3)

wAB = PRAB × e−
dAB
K (4)

where NPP is number of PPs, NA and NB are total numbers
of points on Fibers A and B respectively, r is position
vector in <3 of tract points, and K is a scaling factor that
acts as a similarity threshold on dAB only. When the two
fibers are equal in length and totally parallel, PRAB will
have the maximum value of 1. Zero valued Pivot Ratio
means that there is no PP detection, in other words, two are
totally different from each other. dAB is the mean Euclidean
distance between PP pairs and measures the spatial proximity
of fiber tracts. The purpose of such a metric is to differentiate
two totally parallel fibers which are far away from two totally
parallel fibers which are close to each other. wAB is the final
similarity measure, by definition, 0 ≤ wAB ≤ 1.

B. Embedding in <3 through Laplacian Eigenmaps

One of the well known spectral clustering techniques
is Laplacian Eigenmaps proposed by Belkin et al.[5]. A
graph with nodes (fiber tracts) and edges (assigned with
weight between two fibers according to their similarity) is
constructed from the data. Then it seeks the optimal solution
for a minimization problem of

y = argminy
∑
ij

(yi − yj)2wij (5)

where yi is the value of embedding function for the ith node,
wij is the similarity between ith and jth nodes by definition.
The problem is formulated as a generalized eigenvalue prob-
lem as (D −W)y = λDy where W is the affinity matrix
composed of weights, D is a diagonal matrix of row sums
of W [5]. The trivial solution with λ = 0 is ignored. The
eigenvector corresponding to the second smallest eigenvalue
is the best solution. It is common to take N (=3) eigenvectors
corresponding to N smallest eigenvalues (starting from the
second smallest one) as the embedding functions. Let y2,
y3 and y4 be the 3 eigenvectors used for embedding, then
ei = [y2(i),y3(i),y4(i)] represents the ith fiber tract in <3.
Thus this new embedding space in <3 can be used to color
each fiber tract as commonly used.

C. Outlier Fiber Tract Detection

Outlier fiber tracts are defined to be the ones that are far
away from the embedded manifold, that represents the fiber
bundle(s). Thus a simple outlier fiber tract detector can be
based on the distance to the learned manifold. To demonstrate
the feasibility of this approach, we have devised a simple
outlier detector by thresholding on the mean distance of each
fiber tract to its K (=12) nearest neighbours as follows,

µi =
1

K

∑
j∈Ni

|ei − ej | (6)

µi > θ ⇒ ith tract is an outlier (7)

where Ni is the K nearest neighbours of the ith tract, ei is
the ith tract as represented in the 3D embedding space and θ
is an empirically determined threshold set to be 0.3× 10−3.
Figure 3 shows the number of detected outliers as a function
of the threshold θ for real patient DTI data.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. For all figures, the viewing angle is optimized manually so as to see the structure as much as possible. First three rows correspond to phantom data
experiments with crossing, kissing and linear tracts, each with outlier tracts drawn in solid. The fourth row is results of the real patient data experiments.
The first column is the the scatter plots of tracts represented in 3D embedding space for 9D feature space based similarity measure, the second column is
the same for the new Pivot-Point based similarity measure. The third column shows the fiber tracts where the outlier tracts are drawn in solid for phantom
data. (l) shows the identified outlier tracts in real patient DT-MRI data (top) and the non-outlier tracts (bottom). The outlier tracts are marked with • in all
scatter plots, where as the others are marked with ◦ (magenta).
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Fig. 3. θ (x-axis) vs number of outliers (y-axis) for real patient DTI data.

III. EXPERIMENTS

We applied our method to phantom data composed of
3D tracts generated using MATLAB, that represents the
crossing, kissing, and parallel fiber tracts. The tracts are
manually drawn in 2D and replicated in 3D with different
shifts along the z-axis. Zero mean random Gaussian noise
with 0.1 standard deviation is also added along the z-axis.
There are 200 tracts in each phantom data. We also used
real patient DT-MRI data acquired with a 3 Tesla scanner,
using SENSE MR sequence with 16 diffusion weighting
gradients at 248 × 150 × 24 mm FOV and 124 × 124 × 60
voxel resolution. Figures 2.a, 2.d, 2.g show the phantom fiber
tracts in the new 3D embedding space with the similarity
measure based on 9D feature vectors [6]. Figures 2.b, 2.e,
2.h show the 3D representation of the phantom fiber tracts
in the embedding space based on the new Pivot-Point based
similarity measure. The phantom fiber tracts are shown in
Figures 2.c, 2.f, 2.i. The phantom outlier tracts are marked
with solid lines and their corresponding 3D representations
in the embedding space are marked with •’s, demonstrating
that the outliers are easily identifiable by both the previously
proposed method [6] and the Pivot-Point method.

Figures 2.j and 2.k show the fiber tracts from the real
patient DT-MRI data as represented in the embedding space
corresponding to fiber tract similarity measured in the 9D
feature space and by the Pivot-Point method, respectively. No
clear structure can be observed in Figure 2.j, which makes
outlier detection impossible, where as a manifold is clearly
identifiable in Figure 2.k. The outlier tracts are marked based
on this representation and as described in Section II-C. The
same tracts are also marked in Figure 2.j. Both the outlier
and non-outlier tracts are shown in Figure 2.l.

The unoptimized C++ implementation of the method takes
approximately 20 minutes on a 2.66 GHz desktop computer
with 3 GB RAM.

IV. DISCUSSION AND CONCLUSION

We proposed a new similarity metric which takes into
consideration not only the mean distance between tracts
and their orientation with respect to each other but also the
high frequency variations along the tracts, through building
a pointwise correspondence using the novel idea of pivot-
points. The Laplacian Eigenmaps are used to map the tracts
into a minimum dimensional embedding space. We have
observed a clearly identifiable manifold structure in this
embedding space in both phantom and real patient data
experiments. We compared our similarity measure with a 9D

feature space based measure [6] and showed that although
both measures perform equally well in phantom data, the
new measure results in a manifold in real patient data as
well, unlike the 9D feature space based one.

We have proposed to use the distance to the manifold as
an outlier detector and implemented this idea by thresh-
olding the distance between K nearest neighbours in the
3D embedding space. Thus, we could identify the outlier
tracts in real patient data and furthermore the projection of
outlier tracts onto the manifold can be used as an outlier
correction scheme. A better projection scheme would require
the manifold to be learned with higher precision.

Consequently, our preliminary results suggest that the
pointwise correspondence based fiber tract similarity mea-
sure is capable of forming a continuum of fiber tracts
(within a bundle) in an implicit embedding space which
can be exploited through the use of Laplacian Eigenmaps.
The resulting low dimensional manifold can be learned and
potentially be used for both outlier fiber tract detection and
correction. Further research is required to learn and represent
the aforementioned curved manifold.
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