Introduction

- We explore classification and prediction of women's clothing outfits.
- Key questions:
 - o What kinds of outfit clusters can unsupervised learning techniques find?
 - o Given a new piece of clothing, can we recommend other items to complete the outfit?

• A previously unexplored problem: how to deal with outfits of clothing rather than individual clothing pieces.

- Practical applications:
 - o Online retailers promote similar clothing next to a desired piece of clothing to encourage consumer purchases (e.g., Google Shopper)
- Previous work:
 - o Google Shopper recommends similar-looking dresses for a given searched dress. We predicts not similar pieces, but matching pieces.
 - o Web interface by Princeton undergrads, which recommends accessories for a given outfit based on the color. We predict all clothing, not just accessories.

Data Set

- Previously unexplored data set: online teen clothing retailer
- Users combine different clothes (e.g., a t-shirt, jeans, shoes, and some accessories) to create an outfit

• Website was developed as a social shopping feature, but it is a trove of data for machine learning

We collected information on 1126 outfits with 1585 items

• Each item contains: Image

Price

Text description

- 8 categories of items • Top Dress Bottom Layer
 - Under
 - Swim Shoe

Accessory

Problem Statement

Unsupervised learning

Input: training outfits Output: outfit clusters **Evaluation**: Perplexity of various cluster sizes Perplexity comparison with randomly generated training outfits

Supervised learning

Input: a single item Output: a complete outfit Evaluation: User study

Random Prediction

· From training data, randomly choose an item from each category

Associative Prediction

- · Input: which items are in which outfits
- · Consider the item type as a categorical variable
- · Construct a joint probability distribution over all types
- P(top = t, dress = d, bottom = b, layer = l, under = s, shoe = sh, accessory = a) \sum outfits in which (top = t, dress = d, bottom = b, layer = l, under = s, shoe = sh, accessory = a) total number of outfits
- · Prediction: using conditional probability
- $P(\text{layer} = l, \text{shoe} = sh, \text{accessory} = a \mid \text{dress} = d)$
- P(layer = l, shoe = sh, accessory = a, dress = d)P(dress = d)

· Intuition: items which appeared often with the input item in training outfits are likely good matches

· Disadvantage: the input item must appear in training outfits

• Future work: classify an unknown input item as a convex combination of known items, then construct a new conditional probability distribution

EM Clustering & Prediction

• Input: bag of words for each outfit in the dataset.

• For 10 clusters, top 5 words:

1	2	3	4	5
neck	neck	skirt	neck	pocket
all	short	neck	band	neck
rhinestone	rhinestone	knit	trend	trend
necklace	back	button	all	button
chain	all	front	the	solid
6	7	8	9	10
pocket	strap	neck	earring	all
button	sand	pocket	bangle	skirt
skin	sandal	all	neck	dress
skinny	all	wall	dress	measure
jean	button	wallet	rhineston	measures

k	Perplexity
2	386.5815
5	370.6765
10	369.2121
20	378.574
30	387.5336

• Prediction: for a given single input item

 $\log p(z=k \mid$

LDA Clustering & Prediction

- · Model:

• α : the prior on the per-document topic distributions, β : the per-topic word distribution. θ : the topic distribution, z : the topic for each word in each document, w : observed data.

For 10 topics, top 5 words:

1	2	3	4	5
bangle	sand	wallet	boot	blazer
set	sandal	stud	feather	not
platform	sunglass	wall	braided	collar
turq	sunglasses	pocket	leather	sand
necklace	strap	bangle	slouch	notch
6	7	8	9	10
love	flop	jean	skirt	bangle
love heart	flop flip	jean destroyed	skirt con	bangle set
love heart necklace	flop flip sunglass	jean destroyed skinny	skirt con measure	bangle set band
love heart necklace short	flop flip sunglass plastic	jean destroyed skinny pocket	skirt con measure vary	bangle set band necklace

FASHION ME

Sema Berkiten & Jiasi Chen http://edge-server-01.princeton.edu/FashionMe/

• Perplexity with 5-fold cross validation

Calculate conditional probability:

$$w_{1:N}, \Theta) = \log p(z = k \mid \Theta) + \sum_{n=1}^{N} \log p(w \mid z = k, \Theta)$$

$$-\log\sum_{i=1}^{K} p(z=i, w_{1:N} \mid \Theta)$$

• Pick the cluster which has the maximum posterior probability.

· Select random items from the selected cluster (Because of randomness in the prediction part, k is selected 20 instead of 10 which has the minimum perplexity number).

Input: bag of words for each outfit in the dataset.

User Study Evaluation

• Web interface:

Predictions:

- · For a given input, recommend items to complete outfit
- For each prediction algorithm, record ratings from users

• **Comparison:** user study with same prediction algorithms, but randomly generated training outfits

Conclusions & Future Work

- Outfit clustering algorithms are somewhat successful, e.g. find swimwear
- Evaluate results of user study to determine advantages and disadvantages of each prediction method
- · Refine prediction algorithms based on results of user study
- Image-based item clustering and outfit prediction
- · Budget constraints on recommended items

References

- Bishop, C. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
- Wet Seal <http://www.wetseal.com>
- "Princeton Beats Out 13 Schools to Win Facebook's College Hackathon" http://techcrunch.com/2011/12/04/college-hackathon/

